Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

CHECK(old(x)) → CHECK(x)
OLD(free(x)) → OLD(x)
CHECK(old(x)) → OLD(check(x))
TOP(free(x)) → TOP(check(new(x)))
CHECK(free(x)) → CHECK(x)
TOP(free(x)) → CHECK(new(x))
TOP(free(x)) → NEW(x)
CHECK(new(x)) → CHECK(x)
CHECK(new(x)) → NEW(check(x))
NEW(free(x)) → NEW(x)

The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

CHECK(old(x)) → CHECK(x)
OLD(free(x)) → OLD(x)
CHECK(old(x)) → OLD(check(x))
TOP(free(x)) → TOP(check(new(x)))
CHECK(free(x)) → CHECK(x)
TOP(free(x)) → CHECK(new(x))
TOP(free(x)) → NEW(x)
CHECK(new(x)) → CHECK(x)
CHECK(new(x)) → NEW(check(x))
NEW(free(x)) → NEW(x)

The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

OLD(free(x)) → OLD(x)

The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


OLD(free(x)) → OLD(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(OLD(x1)) = (2)x_1   
POL(free(x1)) = 1/4 + (7/2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

NEW(free(x)) → NEW(x)

The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


NEW(free(x)) → NEW(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(NEW(x1)) = (2)x_1   
POL(free(x1)) = 1/4 + (7/2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CHECK(old(x)) → CHECK(x)
CHECK(free(x)) → CHECK(x)
CHECK(new(x)) → CHECK(x)

The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


CHECK(old(x)) → CHECK(x)
CHECK(free(x)) → CHECK(x)
CHECK(new(x)) → CHECK(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(CHECK(x1)) = (4)x_1   
POL(new(x1)) = 3/2 + (7/4)x_1   
POL(old(x1)) = 1/4 + (11/4)x_1   
POL(free(x1)) = 3/2 + (4)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(free(x)) → TOP(check(new(x)))

The TRS R consists of the following rules:

top(free(x)) → top(check(new(x)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.